
JOURNAL OF COMPUTATIONAL PHYSICS 76, 426447 (1988)

Multitasking Case Study on the Cray-2:
The Q2R Cellular Automaton

JOHN G. ZABOLITZKY*

Minnesota Supetcomputet Institute and
School of Physics and Astronomy,

Unwetsity of Mmnesota,
Mmneapohs. Minnesota

AND

HANS J. HERRMANN

Sewice de Physrque Theotique,
CEN-Saclay, France

Received January 23, 1987; revised June 17, 1987

The Q2R cellular automaton whtch may be used for microcanonical simulation of the king
model is Implemented in parallel on the four processors of a Cray-2 supercomputer. The
stmulation speed is 4.3 GHz as opposed to 670 MHz for the previously fastest reported
implementatron using one processor of a Cray-XMP. We also simulated the largest Ising
system ever studied, IS, 130, 968, 192 spins. A number of subtleties in implementing and
optrmtzing the parallel algorithm are dtscussed, as well as problems in detining performance
measurements. Performance and results from the Q2R algorithm are compared to those from
the standard Metropolis algorithm, and a number of dynamic exponents are measured for the
first time. ‘(“ 1988 Academic Press. Inc

I. INTRODUCTION

The Cray Research, Inc. Cray-2 supercomputer is one of the most powerful
machines available today. It offers unique features in its large 268 Mword shared
(common) memory. In order to solve very large problems which need to use all of
this memory it is expedient to multitask the problem, i.e., have all four processors
work concurrently on the same problem. The specific memory architecture of the
Cray-2 poses a number of difficulties making any optimal or near-optimal
implementation a non-trivial tak. It is the purpose of the present paper to describe
these difficulties, find appropriate optimization strategies and instrumentation, and
implement a highly efficient problem solution. A specific problem taken from the
area of computational physics will be used throughout.

* Present address: KONTRON Electromcs, 8057 Eching, Federal Republic of Germany.
426

OOZI-9991/88 83.00
CopyrIght c 1988 by Academnc Press. Inc
All rights or reproductmn in any form resewed

MULTITASKED CELLULAR AUTOMATON 427

The Ising model is one of the best studied problems in statistical physics. A large
variety of simulation implementations of this model, using different algorithms on
different computational machinery, have been reported [l-6], including three
special-purpose machines [3]. The model consists of a square lattice in two dimen-
sions, or a simple cubic lattice in three dimensions, where one binary variable is
associated with each lattice site. This variable is called a “spin” and can attain the
values “up” (= binary 1) or “down” (= binary 0). The simulation of this model,
which is supposed to be relevant for magnetic solids, consists of initializing the
system to have specific values at each lattice site and then evolving the system in
time by means of one of several algorithms. Updating each lattice site once is called
a “sweep” through the lattice. After a number of sweeps certain measurements are
to be performed, most prominently the measurement of magnetization, i.e.,
counting the number of “up” spins, or equivalently, the number of “down” spins.

The microcanonical algorithm to be used here has first been described by
Vichniac [7] and has been implemented by one of us (HJH) [6] in single-task
mode on a Cray-XMP. This particular algorithm is equivalent to the cellular
automaton Q2R. Historically, it may be interesting to note that only four years ago
the fastest simulation speed [l] was 1.6 MHz (= 1.6 MFLIPS = 1.6 million spin
FLIPS per second). Reference [6] achieved a speed of 670 MFLIPS earlier this
year, whereas we report a speed of 4.3 GFLIPS (giga spin FLIPS per second). This
represents a speedup factor of almost 3000 within four years, obtained of course by
a combination of algorithmic, hardware, and programming advances to be detailed
below.

Consider a square array of spins in two dimensions, of size Nx N spins. In the
usual red-black or checkerboard ordering scheme, this lattice is divided into two
sublattices, X and Y. Every spin in sublattice X has exactly four nearest neighbours
all of which are in sublattice Y and vice versa. The updating algorithm is: “If and
only if spin i in sublattice X has as many up nearest neighbours as down nearest
neighbours, it is flipped.” This algoritm is first executed for all spins within the X
sublattice and then for all spins within the Y sublattice. This sequence is iterated ad
libitum. It should be obvious that this algorithm has similarities with relaxation
steps for partial differential equations, and many of the results put forward below
are of relevance for the latter class of problems.

The remainder of this paper is organized as follows: Section II discusses the
single-task implementation and optimization of the algorithm for the Cray-2. A
problem discovered in defining the performance of this implementation leads to a
discussion of Cray-2 memory access parameters in Section III. The multi-tasked
implementation and performance is discussed in Section IV. The calculations
performed and physics results are discussed in Section V. A summary of the results
and conclusions can be found in Section VI.

428 ZABOLITZKYAND HERRMANN

II. SINGLE-TASK IMPLEMENTATION AND OPTIMIZATION

The algorithm to be implemented has been given in the Introduction: “If and
only if spin i in sublattice X has as many up nearest neighbours as down nearest
neighbours, it is flipped.” An initial implementation for a Cray-XMP has been given
in Ref. [6]. Let us briefly recount the most relevant aspects of this implementation,
which then will be adapted and optimized for the Cray-2.

In order to exploit as much parallelism as possible within a single processor, lat-
tice sites = binary variables are assigned to individual bits within a computer word.
A 64 element Cray vector of 64 bit words therefore is taken to be a 4096 bit array.
With one machine vector instruction all of these 4096 bits are treated together. This
corresponds closely to ideas used in the ICL DAP implementations [4]. By assign-
ing lattice sites to storage bits in a suitable sequence it can be arranged that the ith
bit within a given computer word has its four nearest neighbours stored as ith bits
within four other computer words. The algorihtm therefore can be implemented
employing word-logical operations exclusively. It occurs only at the boundaries of
the system that words must be shifted by one bit in order to assure periodic boun-
dary conditions [6]. This does not pose any problem and will occur only extremely
infrequently for a large system.

The relevant loop as taken from Ref. [6] is reproduced here:

M = N/128
D02K=2,M
J=K
DO3I=l,N/2
11 = IA(J)
12=IA(J+M)
I3 = IC(J)
14=IC(J- I)
ID(J) = XOR(ID(J), OR(

* AND(XOR(Il,I2), XOR(13, 14)), AND(XOR(Il,I3), XOR(12, 14))))
3 J=J+M
2 CONTINUE

Here, N is the linear dimension of the spin system, i.e., we assume a square of N x N
spins. N must be a multiple of 128. The above double loop updates one quarter of
the spin array, minus the first line. The first line update algorithm is slightly dif-
ferent because of boundary conditions [6] and will not be discussed here (though it
will, of course, always be included in any timing data given). For convenience in
treating the boundary condition we further divide the two sub-lattices X and Y on
which the algorithm is defined into two sub-sublattices each. Above loop updates
one of these; the other three cases are similar.

Above double loop performs nicely if and only if N is an odd multiple of 128. This
can easily be understood because of the banking scheme used in the Cray-2 com-

MULTITASKED CELLULAR AUTOMATON 429

mon (shared) memory. Consecutively used elements of IA(J), say, will be fetched
from memory with a vector-read instruction with stride M. If M is odd, all 128
banks present within the 268 Mword vesion of the Cray-2 will be accessed before
the first bank accessed in the operation will be used again. If M is even, however,
only a subset of banks will be used. In the worst case, where M is a multiple of 128,
only one our of the 128 existing banks is used for all elements of the vector. Since
the bank busy time is of the order of 200 ns or 50 clock periods (the Cray-2 has a
clock period of 4.1 ns) this unfortunate choice of system size will slow down the
memory access rate from one word per clock period to one word per 50 clock
periods. This aspect will be discussed in more detail in Section III.

Above loop results in an update rate of 670 MFLIPS if used in one processor of
a Cray-XMP [6] for a medium-sized system, N= 8320, or larger. If used on the
Cray-2, without a single change in the program, compiled under the cft77 compiler
version 1.2 with all optimizations enabled, an update rate of 795 MFLIPS is
measured on an empty machine (that is, the three other processors are idling). This
rate drops down to an average of 645 MFLIPS under normal multi-user operating
conditions. The reason for this is to be found in memory contention as will be
shown in Section III. Memory access with stride M> 1 results in a non-localized
memory bank busy pattern. Since many programs access vectors with unit stride it
seems to be advantageous to do the same here. Unit-stride memory access tends to
keep busy banks better localized in address space, and generally is the most efficient
way to access any memory. Above double loop therefore is inverted to yield

M = N/128
J=2
DO3I=l,N/2
D02K=2,M
11 = IA(J)
I2 = IA(J + M)
I3 = IC(J)
I4 = IC(J - 1)
ID(J) = XOR(ID(J), OR(

* AND(XOR(I1, 12), XOR(13, 14)), AND(XOR(I1, 13), XOR(12, 14))))
2 J=J+l
3 J=J+l

This loop structure is seen to perform identically the same operations as the
previous one, but in different sequence. Results will be identically the same. Under
the same conditions as stated above, we obtain a rate of 955 MFLIPS on an empty
Cray-2 machine, and an average of 822 MFLIPS under multi-user normal
operating conditions. For this loop to perform optimally, M- 1 should be some
multiple of 64, or N be of the form N= 8192k+ 128. Because of the finite
268 Mword common memory k can take on values from 1 to 15, or N from 8320 to
123,008. System sizes N2 then range from 69, 222, 400 spins to 15, 130, 968, 192
spins.

430 ZABOLITZKY AND HERRMANN

The object code generated by the cft77 FORTRAN compiler (version 1.2) does
not fully utilize the Cray-2 processor architecture. In contrast to the Cray-XMP
there is no chaining on the Cray-2. Good performance is obtained by simultaneous
operation of several functional units. In our case the floating-point add unit as well
as multiply unit are not used at all. The logical operations employ only the logical
unit. The other unit involved is the common memory port. This can be operated
simultaneously with the logical unit if different vector registers are involved. Unfor-
tunately, the current FORTRAN compiler version does not make best use of this
feature. All of the memory reads are grouped together at the top of the loop, and all
the logical operations follow after that. In this way only minimal use is made of the
parallelism within a single Cray-2 CPU. In order to overcome this problem, the
above loop has been hand-coded in Cray assembly language as given in Appen-
dix A. This routine is carefully optimized for best possible overlap between
memory-access and logical unit operations. The two loops of the FORTRAN
version could be coalesced to one loop, with an intermediate conditional update of
the address registers corresponding to statement 3 in the FORTRAN version. The
initial address offset between the live vector streams involved is taken care of
by calling the routine from a FORTRAN main program with suitably offset
arguments.

With this routine, the overall performance comes up to 1512 MFLIPS on a single
Cray-2 processor within an otherwise empty machine, and an average of
1257 MFLIPS under standard multi-user operating conditions.

It is quite obvious from the above loop that there are six memory accesses and
eight logical operations required for updating one word or 64 one-bit spin
variables. Equivalencing a logical operation with a floating-point operation, the
performance figures given so far can be translated into MFLOPS (Million floating
point operations per second) as given in Table I, or effectively used memory
bandwidth in Mword/s. From lines 224 of this table it is quite clear that the perfor-
mance of any program running within one CPU, measured as work performed

TABLE I

Performance Summary

Code version MFLIPS MFLOPS Mwordfs

XMP FORTRAN 670 84 63
Cray-2 FORTRAN 6451795 81199 60175
Same, inverted loops 8221955 103/l 19 77190
Cray-2 assembly loop 125711512 1571189 118/142
Four identical tasks 1086 * 4 136*4 102 * 4
Two-way multitasked 2500/2770 3121346 2341260
Four-way multitasked 4300 538 403

Note. In each main column the lirst entry corresponds to standard multi-user operating conditions,
the second one to single-user mode. Where only one entry IS given, no such dtstmction IS meaningful.

MULTITASKED CELLULAR AUTOMATON 431

divided by CPU-s used, varies significantly depending upon the operating con-
ditions, i.e., what programs if any are running in the other three processors. A
further indication of this fact is given by line live of Table I, where four independent
copies of the same program were put into the four CPUs. Performance drops down
from the average multi-user environment performance of 1257 MFLIPS to
1089 MFLIPS. This is again due to memory contention: the program under dis-
cussion in this paper is more intense on memory accesses than the average program
at the Minnesota Supercomputer Center, and so gets less effective memory
bandwidth per processor if competing with itself than if competing with other users’
programs. This fact will become more clear in the next section.

As a last illustration of the variance in single-task performance we give the
MFLIPS rates as obtained from 100 independent measurements on a typical day at
our installation in Fig. 1. Statistically we obtain 1257 f 48 MFLIPS equals 4%
standard deviation. The best case possible are the 1512 MFLIPS if the other three
processors are idling. The theoretical worst-case performance is 437 MFLIPS, as
will be calculated in the next section. It should be quite clear by now that any per-
formance data measured on the Cray-2 must be given with a detailed specification
of the operating conditions, since a difference factor of three is possible in principle.
However, as Fig. 1 exemplifies, performance deviations of more than 15% from
those measured under standard multi-user operating conditions are extremely rare
occurrences. However, since multi-tasking influences memory contention in a rather
singular way, design and measurement of multi-tasking jobs must take these effects
into consideration carefully.

When treating very large systems one should also consider the initialization with
some care. Scalar recursive initialization, assuming one microsecond per spin,
would take more than 4 CPU h for the largest system. A vectorizable initialization
is to set each spin “up” with probability p, and “down” with probability 1 -p (a
percolation system). The relation between the energy of the system and this
probability is given by [S]

where E ranges from -2 (zero temperature, ground-state) to E = 0 (infinite tem-
peature) with p ranging from 0 to 4 or, equivalently, 1 to f. The citical temperature

FIG. 1. Performance of smgle-task code in standard Minnesota multi-user environment, in MFLIPS,
momtored at 100 different times (N= 24,704 system).

432 ZABOLITZKYAND HERRMANN

corresponds to the critical energy E, = -2’,“. This initialization is done most
efficiently by generating words of random bits, then comparing the first word to the
most significant bit of p, the second word with the next most significant bit of p,
and so on, using only word logical instructions [9]. Special efficiency is gained
when p has a small number of non-zero bits in its binary representation. p = Q
resulting in E = - 1.125, for example, can be realized by taking the logical AND of
three words of random bits to define 64 spins within the lattice. Even with rather
inefficient techniques for the generation of random numbers, this takes less than 5
ns/spin. Then, for any system, the initialization time is negligible (G 1% of total
time).

One also needs to know the relation between energy and temperature in general.
We do not measure the temperature but use the known exact relation instead [121.

The last part of the computation to be discussed is the measurement of
magnetization. Here we have to count the number of 1 bits in a vector of words.
The corresponding hardwae instruction exists in the Cray-2 CPU (population
count), and the cft77 FORTRAN compiler uses it. Again the generated code is not
optimal, but since magnetization measurement occurs not too frequently (one
usually does several sweeps over the lattice before another magnetization
measurement is made) this is not too relevant. FORTRAN coded magnetization
measurement takes from 0.26 ns/spin (multi-user, single-task) to 0.19 ns/spin
(single-user, single-task). Multitasking will be discussed in Section IV.

III. EFFECTIVE MEMORY BANDWIDTH

In order to obtain more quantitative insight into the memory contention problem
let us study this by itself. In a dedicated single-user environment it is possible to
control the memory-access patterns of all four CPUs simultaneously and thereby
obtain quantitative precise measurements. These timing measurements must
consider a few important facts. A number of conflicts can slow down memory
access:

1. Register conj7icr. If a memory read or write vector instruction is issued
the vector register used should be free, i.e., not be reserved from some previous
instruction. In particular, consecutive memory references should use different vector
registers since vector-startup-times may be overlapped in this case. If the same
vector register is used in two consecutive vector-read instructions, a conflict occurs
and effective memory bandwidth degrades (example given below). Because of this
fact it is difficult to perform measurements of this kind from FORTRAN programs,
since one cannot in general predict what code will be generated. Assembly language
routines have been used for the measurements reported here. An example is given in
Appendix B.

2. Memory bank conflict. If a read is requested from a currently busy
memory bank, that read is delayed until the memory bank becomes available.

MULTITASKED CELLULAR AUTOMATON 433

Normally, this would not introduce severe problems. However, because of the
enormous size of 268 Mwords the Cray-2 memory is constructed from slow
dynamic randm-access memory chips. The bank busy time of about 200 ns is much
larger than the fast system clock of only 4.1 ns. The bank conflict therefore is much
more penalizing on this machine than usual, where the factor between clock cycle
time and bank busy time is smaller. Memory bank conflicts can be caused by
preceding fetches from the same CPU, or by fetches from other CPUs.

3. Memory quadrant phase conflict. The Cray-2 memory is divided into four
quadrants of 67 MWord each. These quadrants are associated with the four
processors in a rigidly phased mode. Assume that in clock period 0 CPU A has
access to quadrant 0. Then, in this clock period, CPU B will have access to
quadrant 1, CPU C to quadrant 2, and CPU D to quadrant 3. In the next clock
period the asignments shift by one, i.e., CPU A now has access to quadrant 1, and
so on. It is evident that we have another instance where sequential memory access
is best: the two quadrant bits are the least significant bits of the word address.

A number of effective memory bandwidth measurements were performed. First,
let us assume that three processors are idling or otherwise not issuing any memory
references while the fourth processor executes the measuring program. In this case,
we can avoid any bank conflicts by simply reading with odd strides. We measure an
effective bandwidth of 210 Mword/s in this case. If register conflict occurs, this
number drops down to 120 Mword/s. 210 Mword/s is slightly less than one word
per cycle due to imperfect overlap of vector-startup times for the 64-element vector
read instructions. Smaller vector lengths would lead to further degradation and are
not studied here.

A program can create memory bank conflicts with itself. One chance to do this is
to overlap the end of one 64-element vector to be read with the beginning of the
next one. Assume one vector read affects banks 0 to 63, and the next vector read
wants to access banks 63 to 126. The first word for the second vector then has to
come from the same bank where the last word of the previous vector has come
from, which is busy at this time. The effective bandwidth drops down to the same
120 Mword/s as is observed for the register conflict. This case of conflict generation
might seem contrived, but this is not so. Consider the second FORTRAN loop
given above. A sequence of 64 elements of the type IA(J + M) will be read, followed
by a sequence of 64 elements of type IC(J): if one is not very careful about the
location of arrays IA and IC in memory this conflict will very easily occur.

The conflict described last may occur in varying intensities: if the first-word-
address offset between the two vectors under discussion is less than seven, no
degradation occurs: these banks are not busy any more. For an offset of 7 the
effective bandwith drops down to 163 Mword/s, and then gradually decreases to the
worst-case (for this type of conflict) of 120 Mword/s described above.

If employing non-unit stride a quadrant phase conflict can result. If memory is
accessed with stride 2, only every other cycle is the correct quadrant phase met. The
effective bandwidth therefore reduces to 64 Mword/s. With stride four only every

434 ZABOLITZKY AND HERRMANN

fourth cycle is the correct quadrant phase met, resulting in a measured bandwidth
of 37 Mword/s. Strides of 8 or 16 do not result in worse conflicts than four since
there exist only four phases and bandwidth has already degraded so much that no
busy bank is hit. With stride 32, however, the bank busy conflict takes over,
resulting in 22 Mword/s. With stride 64 we obtain 11 Mword/s, and finally the
worst case is stride 128 with 5.5 Mword/s. This discussion shows that non-unit-
stride memory access must be considered with some care on the Cray-2.

All of the preceding discussion assumed that the other three CPUs were not
issuing any memory requests. Let us consider next the case where all other three
CPUs read a continuous infinite length vector stream from consecutive addresses.
If the fourth CPU does the same, obviously all four CPUs will see the same
effective memory bandwidth measured to be 158 Mword/s for each procesor. This
is the most favourable memory access pattern. The aggregate rate of
4 x 158 = 632 Mword/s or 2.6 words/clock period therefore is the aggregate
maximum memory bandwidth obtainable on the Cray-2. It should be noted that
this is less than one word per procesor and cycle. This observation by itself should
make clear that the four CPUs in any non-trivial situation will compete strongly for
memory bandwidth. The decrease from 210 Mword/s (three CPUs idle) to
158 Mword/s results from bank busies generated from the other three CPUs if
active.

In addition to the other three CPUs generating bank busy conflicts we can have
the conflict of vector-end and vector-beginning bank addresses to overlap, i.e., the
first-word-address offset of 63 discussed above. If this occurs for the CPU under
study, its bandwidth decreases to 108 Mword/s.

Still more severe conflicts are generated if the other three CPUs exhibit a less-
well behaved memory access pattern. The worst case possible occurs if all these
three CPUs access only one and the same memory bank continuously. In this case
the effective bandwidth seen by the fourth (well-behaving, unit stride, no internal
conflict) CPU drops down to 41 Mword/s. Any intermediate value can be obtained
by having the other three CPUs perform intermediate variations of access patterns.
It has been shown, therefore, that one and the same code executing within one
CPU can exhibit performance variations between 41 and 210 Mword/s, or a factor
of live, solely depending upon the memory access patterns of the other three
processors. For a memory-access bound computation, where all the arithmetic is
hidden perfectly behind (overlapped with) the memory accesses, that factor
immediately translates into corresponding MFLOPS or MFLIPS variations. This is
the case for the algorithm studied here (Appendix A). If this algorithm were not
involving any memory references, the maximum execution rate would be limited by
the eight logical operations per word update executing at 220 MFLOPS, resulting
in 1760 MFLIPS. This is only 14% larger than the rate measured on an otherwise
empty machine, 1512 MFLIPS. Therefore, memory access and functional unit
operations are almost perfectly overlapped for the code of Appendix A. Better
overlap is inhibited by a insufftcient number of vector registers and would not come
to bear anyway in memory-contention limited situations, which prevail in any

MULTITASKEDCELLULAR AUTOMATON 435

realistic operating environment (either because of multi-user mode or because of
multitasking).

As can be seen from Fig. 1, the worst case of 41 Mword/s, corresponding to
437 MFLIPS, does not occur under any normal circumstances. It would require
quite a curious conspiration of user programs to access all of only one and the same
memory bank all of the time. The performance variations of a few percent shown in
Fig. 1 are much more typical.

Unfortunately the previous paragraph does not hold true for a multitasked
program. In this latter case it will occur that all tasks work on the same data
arrays. If someone chose to apply row-wise algorithms to matrices of dimension 128
or a multiple thereof exactly this type of conspiracy would occur, and extreme slow-
downs could be observed. Multitasking in this case would lead to speedup factors
much smaller than four. In general it can be said that for the Cray-2 multitasking is
the more attractive the less memory-active the multitasked code is: in this case,
multitasking gets rid of those other users causing memory contention, and,
potentially, speedup factors much larger than four could be observed. Related
observations have been made by Taylor and Bauschlicher [lo].

IV. MULTITASKING

There exist several possible ways to multitask a computation of the present type.
If one is doing small systems, one always has to do calculations for a number of
identical systems, the only difference being the initial random number seed. This is
required in order to reduce the statistical variance which is large for small system
(N < 8320). The best possible (most efficient) solution then is to dynamically par-
tition out independent systems to the CPUs available. Since systems are small no
limitation due to limited storage arises. For small systems, the first FORTRAN
loop given in Section II will be used, since the second, improved version is not yet
efficient. The granularity of this scheme is very high: an individual task will take at
least many minutes, if not more. Therefore, there is no measurable multi-tasking
overhead. One expects speedup factors of exactly four.

Because of the discussion of memory contention in Section III one has to be very
careful in defining the reference single-task performance required to calculate
speedup factors. Single-task execution time is defined onf~~ with additional prescrip-
tions about the work of all remaining processors, i.e., depends upon the operating
conditions. In our opinion, there are three possible ways to define single-task
performance, of which only one is acceptable.

1. Measure single-task execution time in a standard multi-user operating
environment. This definition has the drawback that it will depend upon the
installation where the measurement is made, time of day, and chance factors. It will
generally not be reproducible and therefore cannot be accepted.

436 ZABOLITZKY AND HERRMANN

2. Measure single-task execution time by having all other processors idle.
This definition will result in reproducible numbers. However, it represents a very
significant waste of resources: no realistic large-scale calculation will ever be made
under such circumstances. These operating conditions are totally artificial and
contrived, and do not represent a reasonable use of investments made.

3. Measure single-task performance by having four independent copies of the
same program run in the four processors. This definition will lead to reproducible
results and represents a reasonable use of resources. Of course, it serves to nor-
malize out the bulk of memory contention effects. However, as we will show below,
there still is a residue of these effects left. This definition will serve to measure the
overheads involved in task communication and synchronization. It does not serve
to measure memory contention.

In Fig. 2 we give the MFLIPS performance of four independent calculations
running in parallel, for 200 sweeps through the lattice (N= 24704). This graph
corresponds to line five in Table I. We find 1086 f 5 MFLIPS, a standard deviation
of 0.5%. This variation is due to clock interrupts, assorted UNIX demons waking
up, memory refresh, etc. Observe the typical anticorrelation between individual task
performances: whenever one task gets a smaller share of memory bandwidth, the
other tasks get a larger share of it, and vice versa. This type of variation occurs
because memory access patterns may lock between tasks for intermediate times.
Lines four and five of Table I define the three reference values discussed in l-3
above. By definition, the multitasking philosophy given at the beginning of this
section results in a speedup factor of four, therefore. If one takes the single-user,
single-task value as reference, the speedup drops down to 2.9 because of memory
contention. If the “Minnesota multi-user operating condition” is taken as reference,
a speedup factor of 3.5 results. This last result stems solely from the fact that the
current program is more memory-intensive than most others at Minnesota. It is not
clear how much this finding has more global implications.

For large problems the multitasking philosophy described thus far is not feasible:
there is not enough memory on the Cray-2. In any case, for any finite memory
available, one would like to study the largest problem possible, where all of this
memory is used for one problem. We therefore have to multitask a single problem
solution.

FIG 2. Performance of four ldentlcal copies of single-task code running simultaneously and indepen-
dently in smgle-user (dedicated) mode, in MFLIPS, momtored at 200 diffeent times (N = 24,704 system).

MULTITASKED CELLULAR AUTOMATON 437

Let us consider first a two-way multitasking. The original problem specification
implies some amount of recursiveness: first work on one-half of the system, the
“red” spins, or sublattice X. Only ufkr all the X spins have been treated, is it
allowed to deal with the “black” or sublattice Y spins. Therefore, some syn-
chronization is required. The sublattices X and Y already had been broken down
into two sublattices each. The two sublattices of X are totally independent of each
other and may be given to two independent tasks. After both are completed, the
two independent sublattices of Y may be treated. Two-way multitasking therefore
comes quite naturally.

Of the various multitasking primitives the task-start and wait for task-
termination routines [111 are the most time-consuming ones, i.e., incur the most
overhead. It is therefore advisable to create tasks only once per program run, and
use events in order to synchronize the X/Y sublattice calculations. We therefore
have four tasks, corresponding to the 2 x 2 sub-sub-lattices. Each task is associated
with two events: a start event, posted by the main program and waited for by each
task, and a done event, posted by the task and waited for by the main program.
The initial two sweeps through the lattice then will be executed as Fig. 3 shows. At
t = 1, the main program posts the start events for the two X-sublattice tasks which
have been created previously. At t = 2, these two tasks post their done events, and
return to waiting for their next start events. The main program, upon receiving the
two done events, posts the start events for the Y-sublattice tasks, and then waits for
their done events. These tasks proceed to update the Y-sublattice and then post
their done events. The main program receives these two done events, and the next
sweep through the lattice can issue.

The resulting performance figures are given in the sixth line of Table I. In single-
user mode, i.e., having two CPUs idle, 2770 MFLIPS are obtained, a speedup of 1.8
compared to the single-task, single-user reference. The loss of 20% of a CPU is
attributed to memory contention; the synchronization calls take only a few hundred
clock periods each, or about one microsecond, compared to task execution times of
100 ms or more (N= 24, 704). Load is well balanced since the same number of

1 2 3 4

FIG. 3. Activities of tasks vs time. Broken lines, task waits for “start work” event to be signalled
from master. Full lines, task executmg. Two-way multitasked version. The four-way multitasked version
is Identical, with the exception of four tasks active for each the X and Y sublattice calculations. At the
time points I, 2, the master task watts for events signalling the completion of calculations for one
sublattice, and then posts events to signal the tasks for the other sublattice to begin their work.

438 ZABOLITZKY AND HERRMANN

spins are contained within each sublattice, and the same number of operations and
memory accesses are performed. The number obtained under “multi-user” con-
ditions has been obtained at a time shortly after system-startup where there were
only two other tasks in the system. Under standard operating conditions this num-
ber may become arbitrarily small: in a multitasked program, measuring CPU time
is meaningless as far as multitasking performance evaluation is concerned. Instead,
one must measure real time. Real time for executing a program in multi-user mode,
however, depends upon a number of strongly varying factors, like the number of
users and the number of jobs in the system, characteristics of jobs, etc. This number
of 2500 MFLIPS therefore is highly uncertain and not reproducible. If there is an
increasingly large number of tasks in the system competing for CPUs, real time
performance of a single task may approach zero.

In order to obtain four-way multitasking we have to split the four sub-sub-
lattices used so far once again. In the current case, it was found easiest to simply
split the outer loop, i.e., to have one processor work on approximately the first half
of a sub-sub-lattice, and another processor on the second half. Because of the first
line being slower as a consequence of periodic boundary conditions, the second
“half’ is made a litle bigger than the first “half,” since the very first line requires
somewhat more time per spin than all other lines. However, for the large systems
considered here, the potential work imbalance would be less than 0.4% if this point
were not considered. The scheme of Fig. 3 then is generalized for a total of eight
tasks, four per sublattice X or Y. There are eight start events and eight done events,
consequently. The synchronization logic does not change.

The spin-flip rate observed with this method is given in the last line of Table I,
4300 MFLIPS. This number is obtained by dividing the system size by elapsed
wall-clock time, for one complete sweep over the lattice, averaged over 100 sweeps
(there is about 0.5 % statistical variation in task execution times due to reasons dis-
cussed above). Compared to our reference calculation of four independent identical
tasks the speedup factor is 3.96, compared to single-task single-user mode 2.84, and
compared to single-task CPU time in standard multi-user operating mode 3.42. It
should be obvious by now that the last two factors are explained by memory
contention: if three processors are idle, the one active processor sees a much higher
effective memory bandwidth, i.e., the single task is faster, resulting in the 2.84
speedup factor. Under standard multi-user conditions, the average program at
Minnesota still takes less than the maximum memory bandwidth it could get, so
that the present simulation task gets more than a fair share of aggregate memory
bandwidth. Comparing with the case of four independent tasks, we still have to
account for 4% CPU, or 1 % efficiency missing in the first speedup factor given.

The measurements reported above were taken on the N= 24704 system.
Individual task execution time is 69 ms. The few hundred clock periods or about
1 ps required for treating the events, or fractions of a millisecond to perform a con-
text switch, cannot explain this discrepancy. We performed a more detailed timing
analysis by time-stamping each individual task start and stop event. In spite of
exactly the same operation count involved in each task and all memory accesses

MULTITASKED CELLULAR AUTOMATON 439

being stride one, we nevertheless observe a slight load imbalance of about 1%
explaining the above discrepancy. This imbalance results from the different lirst-
word-address offsets required in fetching neighbours for the various sublattices. It
has been seen in Section III that consecutive vector reads from common memory
with unit stride will result in varying effective memory bandwidth depending upon
possible overlap in memory bank space of the vectors fetched. Investigating the
offsets (like IA(J+ M) and [C(J) in the FORTRAN code given in Section II) it
turns out that unavoidable conflicts of this sort result with varying frequencies for
the individual sublattices leading to the discussed work imbalance. We have
therefore explained all performance figures given in Table I by common memory
access limitations. The classical overheads usually discussed in multi-tasking
investigations play no role in the present case. This is of course because of the
rather large granularity of the present problem. If we were to look at smaller
problems, in particular the context switch time would become observable and
reduce the speedup factor. But again, for smaller problems a totally different way of
multitasking would be employed as outlined at the beginning of this section.

In order to avoid reduced speedup factors due to this kind of load imbalance,
dynamic load balancing [111 is strongly recommended wherever applicable. For
the current case, dynamic load balancing is rather difficult to implement and would
drastically reduce the granularity leading to much larger overheads; for the case of
smaller systems discussed at the beginning of this section dynamic load balancing is
the method of choice.

The calculation reported in the next section evaluated the magnetization of the
spin array at ever)’ sweep through the lattice. In this rather unusual case some
additional attention must be given to this usually negligible part of the com-
putation. The magnetization calculation, which obviously can be carried out
independently for any desired subset of words, has been multitasked by giving each
processor one of the four sub-sub-lattices to evaluate. Furthermore, the relevant
loop also has been coded in Cray assembly language to achieve better overlap
between memory access and integer functional unit operation, resulting in a final
performance of 0.05 ns per spin, utilizing the full machine.

V. RESULTS

We performed a run of 2400 lattice sweeps for the 123008’ system. The system
was initialized as a percolation system with “up” probability p = & corresponding to
an energy of E = - 1.125 or temperature [121 T = 1.092349 T,, where T, is the
critical temperature, and a magnetization of M= 0.75. The magnetization was
measured at each iteration in order to obtain a detailed history, and is given in
Fig. 4. This lattice of 15, 130, 968, 192 spins needs 236, 425, 220 words of storage,
including two extra lines added for convenience in treating the periodic boundary
conditions. The total wall-clock time used was 2 h 50 min of dedicated four-

440 ZABOLITZKY AND HERRMANN

SWEEP

FIG. 4. Natural logarithm of magnetization measured vs number of sweeps through the lattice. The
upper curves give measured data and the four-term exponential lit, for the N’= 123,008’ system The
lower curve gives results for the standard Metropolis algorithm [Z] applied to a 2048 x 2049 system, see
discusslon in text.

processor Cray-2 machine time. These 10, 200 s divide into 70 s for initialization
(non-multitasked for ease of random-number generation), 8445 s for lattice updates,
and 1685 s for magnetization measurements. The calculation could not have been
performed on any other computer available today because of the required data
transfer rate of 400 Mword/s. Using a Cray-XMP solid-state disk (SSD) would
have slowed down the calculation at least a factor of four; using magnetic disc
would have resulted in a minimal slowdown factor of 50 (assuming striping of data
to 8 disks in parallel).

Because of the size of the system this data is accurate enough to support being
fitted by a sum of four exponential terms. Statistical errors have been estimated by
dividing the lattice into four sublattices, and recording the magnetizations
individually. The first 25 sweeps have been disregarded in the fitting procedure;
probably another one or two exponential terms would be required to describe these
very early times. The best four-term tit found under these conditions is

M(r) = 0.088301 exp(-0.001818t) + 0.231996 exp(-0.003986 I)

+ 0.187507 exp(-0.010411 t) + 0.107897 exp(-0.040401 t),
(1)

where the time t is measured in lattice sweeps (= Monte Carlo steps per spin). All
parameters are determined to within 10%. No satisfactory tit can be achieved with
only two or three terms, as is quite obvious from the significant deviations from the
straight line in Fig. 4. The above expression is also shown in Fig. 4. The parameters
do not exhibit any size dependence for the large systems studied here. A simulation
of the N= 57,472 and N= 24, 704 systems results in essentially the same
parameters, though with less statistical certainty. Since the very early time regime
due to the percolation initialization may be amenable to analytic treatment, the first
ten magnetizations are given in Table II.

MULTITASKED CELLULAR AUTOMATON 441

TABLE II

Early time magnetuatlons at E = - 1.125,
for the N = 123,008 system

Sweep Magnetlzatkon

0 0.75
1 0.641764
2 0.630649
3 0.616336
4 0.605299
5 0.591935
6 0.588981
7 0.572937
8 0 569760
9 0.560427

10 0.555507

NCW Sweep 0 is the percolation mitlahzatlon.

While the MFLIPS rate of the present calculation is significantly larger than any
other achieved in the past and, in particular, a factor of 50 faster than the most
proficient implementation of the standard canonical Metropolis algorithm [2], the
question arises if the Q2R algorithm may not need many more iterations in order
to obtain physically equivalent results. At the temperature T= 1.092 T, relevant for
the present study the magnetization must decay to zero exponentially with time, as
is borne out by the analytical formula given above. If this exponent is much larger
for the Metropolis algorithm, the latter will have a chance to compete.

In order to investigate this idea we performed a canonical Metropolis simulation
[2] of a 2D 2048 x 2049 system, initialized the same way as discussed above, at the
temperature of 1.092349 T,. The results of this simulation are given in the lower
curve in Fig. 4. Because of the much smaller system size there is significantly more
statistical fluctuation. However, the first 100 sweeps follow rather accurately an
exponential law given by

M(t) = 0.6302 exp(-0.0322 t). (2)

This result does not depend significantly upon system size; a 1025 x 1024 system, as
well as a 8321 x 8320 system, gives the same exponent to better than 1% accuracy.
It is seen that this exponent is a factor of 18 larger than the asymptotic Q2R
exponent of 0.001818. That is, the Metropolis algorithm at this temperature moves
a factor of 18 faster in physical time than the Q2R algorithm asymptotically, but
only a factor of 10 faster at early times. Since the simulation speed per sweep (for
the same system size, of course) is a factor of 50 slower, the Q2R algorithm still
wins, though not by as impressive a margin, but only a factor of 2.5.

In order to find the behaviour of this penomenon with temperature, we did a

442 ZABOLITZKY AND HERRMANN

number of smaller runs at T/T, = 1.928443, corresponding to E = -0.5, with initial
magnetization M = 0.5 achieved via percolation initialization with p = 0.25. With
218 sweeps for the N= 90,240 system we find leading exponents of 0.07 for the
Q2R algorithm, and 0.5 for the Metropolis algorithm (f 10%). For the latter
simulation, 28 sweeps in the 12048 x 12049 system were used. At this rather high
temperature the Metropolis methods gets 7 times as far per sweep as does the Q2R
algorithm, therefore. At T= cc the Metropolis algorithm will be inferior, since
every spin is flipped every time, i.e., the system never really changes but is strict/~
periodic with period length = two sweeps. This does not happen for the Q2R
algorithm. Consequently, somewhere in the high temperature regime there must be
a crossover point where both algorithms have the same efhciency. However, since
this regime is not really interesting, we did not try to find that temperature. It seems
to be a fair conclusion, however, from the present evidence as well as that of
Ref. [6], that the Q2R algorithm is more strongly affected by critical slowing down
than the standard Metropolis algorithm.

We also performed a number of calculations in closer vicinity of the critical tem-
perature. At temperatures above the critical temperature any initial magnetization
must decay to zero exponentially (Fig. 4). At T= 1.003 T, this exponential decay
can still be observed, though not with sufficient accuracy to measure the exponent
(without significant investments in computer time), see Fig. 5. For a temperature of
T= 1.01 T, the exponential decay is already rather well pronounced (bottom curve
in Fig. 5).

At the critical temperature any initial magnetization must decay to zero like a
power law. For the Q2R algorithm this is demonstrated in the center part of Fig. 5,

-1' a
I I I I I

6 7 8 9 10 11 12 13 14

FIG. 5. Natural logarithm of magnetization measured vs natural loganthm of number of sweeps. The
upper curve results for T=0.97898 T,, where M = 0.75071 is the exact result. The center curve 1s at
T= T,. The straight line tit is given in Eq. (3). The two bottom curves show the typical behaviour at
temperatures above T,. All results are from the N= 8320 system.

MULTITASKED CELLULAR AUTOMATON 443

exhibiting 311,000 sweeps for the N2 = 83202 system. The asymptotic behaviour is
given by

lnM(r)= -0.02166-O.O5787Int,

where the time t is measured in lattice sweeps, and the coefficients are determined
within 5%. For the standard Metropolis algorithm [2] the corresponding result is

In M(t) = -0.1589 - 0.05614 In t. (4)

It is seen that at the critical temperature both algorithms exhibit the same exponent,
i.e., are equally efficient per sweep. The performance advantage of the Q2R
algorithm at this-the most important-temperature therefore carries over in full to
the simulation of physical observables. The exponents given in Eqs. (3) and (4) do
not depend upon system size in our calculations, for both the Metropolis and the
Q2R algorithm, as far as the error bars allow us to tell.

A corresponding investigation for the microcanonical algorithm with demons [S]
would be most useful. The study of Bhanot et al. [13] does not address the
exponent discussed above. Their estimate as to the higher efficiency is based on
CPU time comparisons. Since they do not give details of their Metropolis
implementation, no comparison on efficiency per lattice sweep can be made.

At temperatures below the critical temperature the initial magnetization is to
approach exponentially the spontaneous magnetization of the 2D Ising model,
which is known exactly for all temperatues [12]. It has been shown in Ref. [6] that
the Q2R algorithm roughly, i.e., within statistical uncertainties of several percent,
reproduces these values. We performed a more quantitative test at E = -2”2 -0.1,
or a temperature of 0.97898 T,. The results for 7 x lo5 sweeps over the N* = 8320*
lattice are shown in the upper part of Fig. 5, together with the exact result of
M= 0.75071. We use these rather large lattices in order to avoid any discussion of
finite-size effects, which can be significant for the microcanonical Q2R
algorithm [131 on smaller lattices. The measured value is M= 0.7508 f0.0004 in
perfect agreement with the exact value.

We must remark that none of the calculations reported here used any averaging
over initial configurations. In each case, we prepared one single contiguration by
randomly setting a number of spins in order to achieve a system at the desired
energy. All results reported come from single, long runs stepping the single
configuration in time. While of course this cannot prove the ergodicity of the
present algorithm we can state that no traces of non-ergodic behaviour have been
found. For very low temperatures, however, non-ergodic behaviour is known to
occur [143. Also on short time scales traces of periodic behaviour may be seen, c.f.
the regular oscillations superimposed on the curves in Fig. 5. This periodic
behaviour is due to finite clusters with finite periods under the deterministic Q2R
algorithm.

ZABOLITZKY AND HERRMANN

VI. SUMMARY AND CONCLUSIONS

We have demonstrated that Monte Carlo simulations of the present type can be
adapted to the architecture of the Cray-2 rather well. The multitasking performance
is limited by memory bandwidth considerations. Classical considerations like
inter-task communication and synchronization, as well as work balance, are
comparatively of little importance, due to the large granularity of the problem. The
most important consideration for making optimal use of a Cray-2 therefore is
reduction of memory contention. In some cases, like matrix multiply, the local
memory may be used for this purpose; for the present algorithm we did not find
any use of local memory.

The simulation speed per spin of the Q2R algorithm is significantly larger than
the speed of the Metropolis algorithm. However, this fact is at some temperatures
partially offset by a larger number of lattice sweeps required by the Q2R algorithm
in order to “travel the same distance in a random walk.” Overall, and in particular
at the critical temperature, the Q2R algorithm is significantly faster than
Metropolis.

APPENDIX A. ASSEMBLY LANGUAGE VERSION OF INNER Loop

This appendix gives an optimized version of the FORTRAN double loop of
Section IT, using cal (Cray assembly language). The optimization is for the Cray-2;
a Cray-XMP would require an entirely different code to be optimal. A number of
standard macros are used for the subroutine linkage:

IDENT LOOP
* Q2R ALGORITHM INNER LOOP, GENERAL CASE

ENTRY LOOP
LOOP ENTER (II, 12,13,14,15, NLOOP, MDMX64), MODE = BASELVL

BASE M
*
* REGISTER MAP
* A HOLDS S HOLDS
*------------------ ~~~~~
*o 64
* 1 >IAl<
*2 >IA2<
*3 >IA3<
*4 >IA4< INNER LIMIT
* 5 >ID < OUTER COUNTER
*6 I 1
*7 > ID < OLD INNER COUNTER

MULTITASKED CELLULAR AUTOMATON 445

ADDRESS Al, 11 ; IA1
ADDRESS A2, I2 ; IA2
ADDRESS A3, I3 ; IA3
ADDRESS A4,14 ; IA4 FIRST WORD ADDRESSES
ADDRESS A5, I5 ; ID(K)
LOAD S4, MDMX64; INNER LOOP TRIP LIMIT
s7 s4
LOAD S5, NLOOP ; OUTER LOOP TRIP COUNT
A6 1
S6 A6

A0 D’64
VL A0 ; VECTORLENGTH

Vl (Al, A6)
Al Al +A0
V3 (A3, A6)
A3A3+AO
V2 (A2, A6)
A2 A2+AO
J BEGIN

; GET IA1

; GET IA3 *** pre-fetch ***

; GET IA2

LLL
BEGIN

jA7, A6) V4
vo Vl\V3

A7 A5
A5ASfAO
S7 S7-S6

; STORE ID *** from previous loop trip ***
; IA1 XOR IA3

; SAVE CURRENT ID ADDRESS
; GET NEW ID ADDRESS
; DECREMENT INNER LOOP COUNT

V4 (A4, A6)
A4A4+AO
V6 Vl \,V2

JN S7. PROCEED
s7 s4
Al Al +A6
A2A2+A6
A3A3+A6
A4 A4+A6
A5A5+A6

PROCEED V.5 (A7, A6)

Vl V2;,V4
v7 VI&V0

; GET IA4

; IA1 XOR IA2

; NO WORD SKIP
; RE-INIT COUNTER

; SKIP ONE WORD

; GET ID
; IA2 XOR IA4
; FIRST AND

446 ZABOLITZKYANDHERRMANN

V2 (A2, A6)
A2 A2+AQ
Vl v3\v4
VO Vl&V6
V3 (A3, A6)
A3 A3+AO
V6 VO!V7
Vl (Al, A6)
V4 V5\V6
Al Al+AO

S5 S5-S6
JN S5, LLL

(A7, A6) V4
RETURN
ENDSUB
END

; GET IA2 *** for next trip ***

; IA3 XOR IA4
; SECOND AND
; GET IA3 *** for next trip ***

; OR
; GET IA1 *** for next trip ***
; XOR FLIP

; DECREMENT LOOPCOUNT

; STORE RESULT FROM LAST TRIP

APPENDIXB. MEMORY-BANDWIDTH MEASURING INSTRUMENTATION

In order to avoid any register conflicts a memory bandwidth timing routine
should be written in assembly language for the Cray-2. The routine given here will
read 256,000 words from common memory, using the given stride and address
offset between consecutive vectors. This routine should be called sandwiched
between calls to the CPU timer [second()] from a FORTRAN main program.
Overhead is then negligible.

IDENT TIMER
ENTRY TIMER

TIMER ENTER (11, STRIDE, OFFSET), MODE = BASELVL
BASE M

*
ADDRESS Al, I1 ; address of array to be read from
LOAD A6, STRIDE ; stride between vector elements
LOAD A7, OFFSET ; address offset between first words
Sl 1 7 of vectors
S6 D’lOOO ; read 4 * 1000 vectors . . .

A0 D’64
VL A0 . 1 ... of length 64

MULTITASKED CELLULAR AUTOMATON 447

L(IOP VO (Al, A6)
Al Al +A7
VI (Al, A6)
Al Al +A7
V2 (Al, A6)
Al Al+A7
V3 (Al, A6)
Al Al +A7
S6 S6-S 1
JN S6, LOOP

; LOAD TO VO WITH STRIDE

; LOAD TO Vl WITH STRIDE

; LOAD TO V2 WITH STRIDE

; LOAD TO V3 WITH STRIDE

; all loads done to different
; vector registers

RETURN
ENDSUB
END

ACKNOWLEDGMENTS

We are grateful to D. Stauffer for useful discussions. We thank the staff of Mmnesota Supercomputer
Center, Inc., and in particular R B. Walsh and K. C. Matthews for sigmlicant help m carrying out the
calculations reported here.

REFERENCES

I. R. ZORN, H. J. HERRMANN, AND C. REBBI, Compuf. Phys. Commun. 23, 337 (1981); C. KALLE AND
V. W~NKELMANN. J. Sfaflst Phy. 28, 639 (1982).

2. S. WANSLEBEN. J. G. ZABOLITZKY, AND C KALLE, J. Stafist. Phys. 37, 271 (1984); S WANSLEBEN,
Compuf. Phys. Commun. 43, 9 (1987).

3. R B PEARSON, J. RICHARDSON, AND D. TOUSSAINT. J. Compuf. Phys. 51, 241 (1983); A. HOOGLAND,
J. SPAA. B. SELMAN. AND A. COMPAGNER. J. Compuf. PhFs. 51, 250 (1983); J. H. CONDON AND
A. T OGIELSKI, Rer Sri. Insfrum. 56, 1691 (1985); A T OGIELSKI AND I MORGENSTERN, Phys. Reel.
Left. 54. 928 (1985).

4. G. S PAWLEY. D. J. WALLACE, R. J. SWENDSON, AND K. G. WILSON, Phys. Reo. B 29,403O (1984);
S. F. REDDAWAY, D M. SCOTT. AND K A. SMITH. Compuf. Phys. Commun. 37, 351 (1985).

5 M CREUTZ, Phys Rec. Leff. SO, 1411 (1983); M. CREUTZ, P. MITRA, AND K. J. M. MORIARTY,
Compuf. Phys. Commun. 33. 361 (1984).

6. H. J HERRMANN, J. Sfafrsf. Phys. 45, 145 (1986).
7. G Y. VICHNIAC, Physlca D 10, 96 (1984). Y. POMEAU, J. Phys. A 17, L415 (1984).
8. D STAUFFER, Instttute for Theoretical Physics. University at Cologne, W.-Germany, private

communicatton.
9 G. 0 WILLIAMS AND M H. KALOS, J. Sfafisf. Phys. 37, 283 (1984).

10. P. R. TAYLOR AND C. W. BAUSCHLICHER. to be published.
I I. Gray-2 Mulfifaskmg Programmer’s Manual, Cray Research, Inc., SN-2026 (unpublished).
12 G. F. NEWELL AND E. W. MONTROLL, Reo. Mod. Phys. 25, 352 (1953); B. MCCOY AND T. T. Wu.

The Two-Dimensional Isrng Model (Harvard Univ Press, Cambridge, MA, 1973).
13. G. BHANOT, M. CREUTZ. AND H. NEUBERGER. Nucl. Phys. B235, 417 (1984)
14 H. J HERRMANN. H. 0. CARMESIN, AND D. STAUFFER, J. Phxs. A, in press.

581 76;?-I5

