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The Q2R cellular automaton whtch may be used for microcanonical simulation of the king 
model is Implemented in parallel on the four processors of a Cray-2 supercomputer. The 
stmulation speed is 4.3 GHz as opposed to 670 MHz for the previously fastest reported 
implementatron using one processor of a Cray-XMP. We also simulated the largest Ising 
system ever studied, IS, 130, 968, 192 spins. A number of subtleties in implementing and 
optrmtzing the parallel algorithm are dtscussed, as well as problems in detining performance 
measurements. Performance and results from the Q2R algorithm are compared to those from 
the standard Metropolis algorithm, and a number of dynamic exponents are measured for the 
first time. ‘(“ 1988 Academic Press. Inc 

I. INTRODUCTION 

The Cray Research, Inc. Cray-2 supercomputer is one of the most powerful 
machines available today. It offers unique features in its large 268 Mword shared 
(common) memory. In order to solve very large problems which need to use all of 
this memory it is expedient to multitask the problem, i.e., have all four processors 
work concurrently on the same problem. The specific memory architecture of the 
Cray-2 poses a number of difficulties making any optimal or near-optimal 
implementation a non-trivial tak. It is the purpose of the present paper to describe 
these difficulties, find appropriate optimization strategies and instrumentation, and 
implement a highly efficient problem solution. A specific problem taken from the 
area of computational physics will be used throughout. 
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The Ising model is one of the best studied problems in statistical physics. A large 
variety of simulation implementations of this model, using different algorithms on 
different computational machinery, have been reported [l-6], including three 
special-purpose machines [3]. The model consists of a square lattice in two dimen- 
sions, or a simple cubic lattice in three dimensions, where one binary variable is 
associated with each lattice site. This variable is called a “spin” and can attain the 
values “up” (= binary 1) or “down” (= binary 0). The simulation of this model, 
which is supposed to be relevant for magnetic solids, consists of initializing the 
system to have specific values at each lattice site and then evolving the system in 
time by means of one of several algorithms. Updating each lattice site once is called 
a “sweep” through the lattice. After a number of sweeps certain measurements are 
to be performed, most prominently the measurement of magnetization, i.e., 
counting the number of “up” spins, or equivalently, the number of “down” spins. 

The microcanonical algorithm to be used here has first been described by 
Vichniac [7] and has been implemented by one of us (HJH) [6] in single-task 
mode on a Cray-XMP. This particular algorithm is equivalent to the cellular 
automaton Q2R. Historically, it may be interesting to note that only four years ago 
the fastest simulation speed [l] was 1.6 MHz (= 1.6 MFLIPS = 1.6 million spin 
FLIPS per second). Reference [6] achieved a speed of 670 MFLIPS earlier this 
year, whereas we report a speed of 4.3 GFLIPS (giga spin FLIPS per second). This 
represents a speedup factor of almost 3000 within four years, obtained of course by 
a combination of algorithmic, hardware, and programming advances to be detailed 
below. 

Consider a square array of spins in two dimensions, of size Nx N spins. In the 
usual red-black or checkerboard ordering scheme, this lattice is divided into two 
sublattices, X and Y. Every spin in sublattice X has exactly four nearest neighbours 
all of which are in sublattice Y and vice versa. The updating algorithm is: “If and 
only if spin i in sublattice X has as many up nearest neighbours as down nearest 
neighbours, it is flipped.” This algoritm is first executed for all spins within the X 
sublattice and then for all spins within the Y sublattice. This sequence is iterated ad 
libitum. It should be obvious that this algorithm has similarities with relaxation 
steps for partial differential equations, and many of the results put forward below 
are of relevance for the latter class of problems. 

The remainder of this paper is organized as follows: Section II discusses the 
single-task implementation and optimization of the algorithm for the Cray-2. A 
problem discovered in defining the performance of this implementation leads to a 
discussion of Cray-2 memory access parameters in Section III. The multi-tasked 
implementation and performance is discussed in Section IV. The calculations 
performed and physics results are discussed in Section V. A summary of the results 
and conclusions can be found in Section VI. 



428 ZABOLITZKYAND HERRMANN 

II. SINGLE-TASK IMPLEMENTATION AND OPTIMIZATION 

The algorithm to be implemented has been given in the Introduction: “If and 
only if spin i in sublattice X has as many up nearest neighbours as down nearest 
neighbours, it is flipped.” An initial implementation for a Cray-XMP has been given 
in Ref. [6]. Let us briefly recount the most relevant aspects of this implementation, 
which then will be adapted and optimized for the Cray-2. 

In order to exploit as much parallelism as possible within a single processor, lat- 
tice sites = binary variables are assigned to individual bits within a computer word. 
A 64 element Cray vector of 64 bit words therefore is taken to be a 4096 bit array. 
With one machine vector instruction all of these 4096 bits are treated together. This 
corresponds closely to ideas used in the ICL DAP implementations [4]. By assign- 
ing lattice sites to storage bits in a suitable sequence it can be arranged that the ith 
bit within a given computer word has its four nearest neighbours stored as ith bits 
within four other computer words. The algorihtm therefore can be implemented 
employing word-logical operations exclusively. It occurs only at the boundaries of 
the system that words must be shifted by one bit in order to assure periodic boun- 
dary conditions [6]. This does not pose any problem and will occur only extremely 
infrequently for a large system. 

The relevant loop as taken from Ref. [6] is reproduced here: 

M = N/128 
D02K=2,M 
J=K 
DO3I=l,N/2 
11 = IA(J) 
12=IA(J+M) 
I3 = IC(J) 
14=IC(J- I) 
ID(J) = XOR(ID(J), OR( 

* AND(XOR(Il,I2), XOR(13, 14)), AND(XOR(Il,I3), XOR(12, 14)) )) 
3 J=J+M 
2 CONTINUE 

Here, N is the linear dimension of the spin system, i.e., we assume a square of N x N 
spins. N must be a multiple of 128. The above double loop updates one quarter of 
the spin array, minus the first line. The first line update algorithm is slightly dif- 
ferent because of boundary conditions [6] and will not be discussed here (though it 
will, of course, always be included in any timing data given). For convenience in 
treating the boundary condition we further divide the two sub-lattices X and Y on 
which the algorithm is defined into two sub-sublattices each. Above loop updates 
one of these; the other three cases are similar. 

Above double loop performs nicely if and only if N is an odd multiple of 128. This 
can easily be understood because of the banking scheme used in the Cray-2 com- 
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mon (shared) memory. Consecutively used elements of IA(J), say, will be fetched 
from memory with a vector-read instruction with stride M. If M is odd, all 128 
banks present within the 268 Mword vesion of the Cray-2 will be accessed before 
the first bank accessed in the operation will be used again. If M is even, however, 
only a subset of banks will be used. In the worst case, where M is a multiple of 128, 
only one our of the 128 existing banks is used for all elements of the vector. Since 
the bank busy time is of the order of 200 ns or 50 clock periods (the Cray-2 has a 
clock period of 4.1 ns) this unfortunate choice of system size will slow down the 
memory access rate from one word per clock period to one word per 50 clock 
periods. This aspect will be discussed in more detail in Section III. 

Above loop results in an update rate of 670 MFLIPS if used in one processor of 
a Cray-XMP [6] for a medium-sized system, N= 8320, or larger. If used on the 
Cray-2, without a single change in the program, compiled under the cft77 compiler 
version 1.2 with all optimizations enabled, an update rate of 795 MFLIPS is 
measured on an empty machine (that is, the three other processors are idling). This 
rate drops down to an average of 645 MFLIPS under normal multi-user operating 
conditions. The reason for this is to be found in memory contention as will be 
shown in Section III. Memory access with stride M> 1 results in a non-localized 
memory bank busy pattern. Since many programs access vectors with unit stride it 
seems to be advantageous to do the same here. Unit-stride memory access tends to 
keep busy banks better localized in address space, and generally is the most efficient 
way to access any memory. Above double loop therefore is inverted to yield 

M = N/128 
J=2 
DO3I=l,N/2 
D02K=2,M 
11 = IA(J) 
I2 = IA(J + M) 
I3 = IC(J) 
I4 = IC(J - 1) 
ID(J) = XOR(ID(J), OR( 

* AND(XOR(I1, 12), XOR(13, 14)), AND(XOR(I1, 13), XOR(12, 14)) )) 
2 J=J+l 
3 J=J+l 

This loop structure is seen to perform identically the same operations as the 
previous one, but in different sequence. Results will be identically the same. Under 
the same conditions as stated above, we obtain a rate of 955 MFLIPS on an empty 
Cray-2 machine, and an average of 822 MFLIPS under multi-user normal 
operating conditions. For this loop to perform optimally, M- 1 should be some 
multiple of 64, or N be of the form N= 8192k+ 128. Because of the finite 
268 Mword common memory k can take on values from 1 to 15, or N from 8320 to 
123,008. System sizes N2 then range from 69, 222, 400 spins to 15, 130, 968, 192 
spins. 
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The object code generated by the cft77 FORTRAN compiler (version 1.2) does 
not fully utilize the Cray-2 processor architecture. In contrast to the Cray-XMP 
there is no chaining on the Cray-2. Good performance is obtained by simultaneous 
operation of several functional units. In our case the floating-point add unit as well 
as multiply unit are not used at all. The logical operations employ only the logical 
unit. The other unit involved is the common memory port. This can be operated 
simultaneously with the logical unit if different vector registers are involved. Unfor- 
tunately, the current FORTRAN compiler version does not make best use of this 
feature. All of the memory reads are grouped together at the top of the loop, and all 
the logical operations follow after that. In this way only minimal use is made of the 
parallelism within a single Cray-2 CPU. In order to overcome this problem, the 
above loop has been hand-coded in Cray assembly language as given in Appen- 
dix A. This routine is carefully optimized for best possible overlap between 
memory-access and logical unit operations. The two loops of the FORTRAN 
version could be coalesced to one loop, with an intermediate conditional update of 
the address registers corresponding to statement 3 in the FORTRAN version. The 
initial address offset between the live vector streams involved is taken care of 
by calling the routine from a FORTRAN main program with suitably offset 
arguments. 

With this routine, the overall performance comes up to 1512 MFLIPS on a single 
Cray-2 processor within an otherwise empty machine, and an average of 
1257 MFLIPS under standard multi-user operating conditions. 

It is quite obvious from the above loop that there are six memory accesses and 
eight logical operations required for updating one word or 64 one-bit spin 
variables. Equivalencing a logical operation with a floating-point operation, the 
performance figures given so far can be translated into MFLOPS (Million floating 
point operations per second) as given in Table I, or effectively used memory 
bandwidth in Mword/s. From lines 224 of this table it is quite clear that the perfor- 
mance of any program running within one CPU, measured as work performed 

TABLE I 

Performance Summary 

Code version MFLIPS MFLOPS Mwordfs 

XMP FORTRAN 670 84 63 
Cray-2 FORTRAN 6451795 81199 60175 
Same, inverted loops 8221955 103/l 19 77190 
Cray-2 assembly loop 125711512 1571189 118/142 
Four identical tasks 1086 * 4 136*4 102 * 4 
Two-way multitasked 2500/2770 3121346 2341260 
Four-way multitasked 4300 538 403 

Note. In each main column the lirst entry corresponds to standard multi-user operating conditions, 
the second one to single-user mode. Where only one entry IS given, no such dtstmction IS meaningful. 
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divided by CPU-s used, varies significantly depending upon the operating con- 
ditions, i.e., what programs if any are running in the other three processors. A 
further indication of this fact is given by line live of Table I, where four independent 
copies of the same program were put into the four CPUs. Performance drops down 
from the average multi-user environment performance of 1257 MFLIPS to 
1089 MFLIPS. This is again due to memory contention: the program under dis- 
cussion in this paper is more intense on memory accesses than the average program 
at the Minnesota Supercomputer Center, and so gets less effective memory 
bandwidth per processor if competing with itself than if competing with other users’ 
programs. This fact will become more clear in the next section. 

As a last illustration of the variance in single-task performance we give the 
MFLIPS rates as obtained from 100 independent measurements on a typical day at 
our installation in Fig. 1. Statistically we obtain 1257 f 48 MFLIPS equals 4% 
standard deviation. The best case possible are the 1512 MFLIPS if the other three 
processors are idling. The theoretical worst-case performance is 437 MFLIPS, as 
will be calculated in the next section. It should be quite clear by now that any per- 
formance data measured on the Cray-2 must be given with a detailed specification 
of the operating conditions, since a difference factor of three is possible in principle. 
However, as Fig. 1 exemplifies, performance deviations of more than 15% from 
those measured under standard multi-user operating conditions are extremely rare 
occurrences. However, since multi-tasking influences memory contention in a rather 
singular way, design and measurement of multi-tasking jobs must take these effects 
into consideration carefully. 

When treating very large systems one should also consider the initialization with 
some care. Scalar recursive initialization, assuming one microsecond per spin, 
would take more than 4 CPU h for the largest system. A vectorizable initialization 
is to set each spin “up” with probability p, and “down” with probability 1 -p (a 
percolation system). The relation between the energy of the system and this 
probability is given by [S] 

where E ranges from -2 (zero temperature, ground-state) to E = 0 (infinite tem- 
peature) with p ranging from 0 to 4 or, equivalently, 1 to f. The citical temperature 

FIG. 1. Performance of smgle-task code in standard Minnesota multi-user environment, in MFLIPS, 
momtored at 100 different times (N= 24,704 system). 
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corresponds to the critical energy E, = -2’,“. This initialization is done most 
efficiently by generating words of random bits, then comparing the first word to the 
most significant bit of p, the second word with the next most significant bit of p, 
and so on, using only word logical instructions [9]. Special efficiency is gained 
when p has a small number of non-zero bits in its binary representation. p = Q 
resulting in E = - 1.125, for example, can be realized by taking the logical AND of 
three words of random bits to define 64 spins within the lattice. Even with rather 
inefficient techniques for the generation of random numbers, this takes less than 5 
ns/spin. Then, for any system, the initialization time is negligible ( G 1% of total 
time). 

One also needs to know the relation between energy and temperature in general. 
We do not measure the temperature but use the known exact relation instead [ 121. 

The last part of the computation to be discussed is the measurement of 
magnetization. Here we have to count the number of 1 bits in a vector of words. 
The corresponding hardwae instruction exists in the Cray-2 CPU (population 
count), and the cft77 FORTRAN compiler uses it. Again the generated code is not 
optimal, but since magnetization measurement occurs not too frequently (one 
usually does several sweeps over the lattice before another magnetization 
measurement is made) this is not too relevant. FORTRAN coded magnetization 
measurement takes from 0.26 ns/spin (multi-user, single-task) to 0.19 ns/spin 
(single-user, single-task). Multitasking will be discussed in Section IV. 

III. EFFECTIVE MEMORY BANDWIDTH 

In order to obtain more quantitative insight into the memory contention problem 
let us study this by itself. In a dedicated single-user environment it is possible to 
control the memory-access patterns of all four CPUs simultaneously and thereby 
obtain quantitative precise measurements. These timing measurements must 
consider a few important facts. A number of conflicts can slow down memory 
access: 

1. Register conj7icr. If a memory read or write vector instruction is issued 
the vector register used should be free, i.e., not be reserved from some previous 
instruction. In particular, consecutive memory references should use different vector 
registers since vector-startup-times may be overlapped in this case. If the same 
vector register is used in two consecutive vector-read instructions, a conflict occurs 
and effective memory bandwidth degrades (example given below). Because of this 
fact it is difficult to perform measurements of this kind from FORTRAN programs, 
since one cannot in general predict what code will be generated. Assembly language 
routines have been used for the measurements reported here. An example is given in 
Appendix B. 

2. Memory bank conflict. If a read is requested from a currently busy 
memory bank, that read is delayed until the memory bank becomes available. 
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Normally, this would not introduce severe problems. However, because of the 
enormous size of 268 Mwords the Cray-2 memory is constructed from slow 
dynamic randm-access memory chips. The bank busy time of about 200 ns is much 
larger than the fast system clock of only 4.1 ns. The bank conflict therefore is much 
more penalizing on this machine than usual, where the factor between clock cycle 
time and bank busy time is smaller. Memory bank conflicts can be caused by 
preceding fetches from the same CPU, or by fetches from other CPUs. 

3. Memory quadrant phase conflict. The Cray-2 memory is divided into four 
quadrants of 67 MWord each. These quadrants are associated with the four 
processors in a rigidly phased mode. Assume that in clock period 0 CPU A has 
access to quadrant 0. Then, in this clock period, CPU B will have access to 
quadrant 1, CPU C to quadrant 2, and CPU D to quadrant 3. In the next clock 
period the asignments shift by one, i.e., CPU A now has access to quadrant 1, and 
so on. It is evident that we have another instance where sequential memory access 
is best: the two quadrant bits are the least significant bits of the word address. 

A number of effective memory bandwidth measurements were performed. First, 
let us assume that three processors are idling or otherwise not issuing any memory 
references while the fourth processor executes the measuring program. In this case, 
we can avoid any bank conflicts by simply reading with odd strides. We measure an 
effective bandwidth of 210 Mword/s in this case. If register conflict occurs, this 
number drops down to 120 Mword/s. 210 Mword/s is slightly less than one word 
per cycle due to imperfect overlap of vector-startup times for the 64-element vector 
read instructions. Smaller vector lengths would lead to further degradation and are 
not studied here. 

A program can create memory bank conflicts with itself. One chance to do this is 
to overlap the end of one 64-element vector to be read with the beginning of the 
next one. Assume one vector read affects banks 0 to 63, and the next vector read 
wants to access banks 63 to 126. The first word for the second vector then has to 
come from the same bank where the last word of the previous vector has come 
from, which is busy at this time. The effective bandwidth drops down to the same 
120 Mword/s as is observed for the register conflict. This case of conflict generation 
might seem contrived, but this is not so. Consider the second FORTRAN loop 
given above. A sequence of 64 elements of the type IA(J + M) will be read, followed 
by a sequence of 64 elements of type IC(J): if one is not very careful about the 
location of arrays IA and IC in memory this conflict will very easily occur. 

The conflict described last may occur in varying intensities: if the first-word- 
address offset between the two vectors under discussion is less than seven, no 
degradation occurs: these banks are not busy any more. For an offset of 7 the 
effective bandwith drops down to 163 Mword/s, and then gradually decreases to the 
worst-case (for this type of conflict) of 120 Mword/s described above. 

If employing non-unit stride a quadrant phase conflict can result. If memory is 
accessed with stride 2, only every other cycle is the correct quadrant phase met. The 
effective bandwidth therefore reduces to 64 Mword/s. With stride four only every 
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fourth cycle is the correct quadrant phase met, resulting in a measured bandwidth 
of 37 Mword/s. Strides of 8 or 16 do not result in worse conflicts than four since 
there exist only four phases and bandwidth has already degraded so much that no 
busy bank is hit. With stride 32, however, the bank busy conflict takes over, 
resulting in 22 Mword/s. With stride 64 we obtain 11 Mword/s, and finally the 
worst case is stride 128 with 5.5 Mword/s. This discussion shows that non-unit- 
stride memory access must be considered with some care on the Cray-2. 

All of the preceding discussion assumed that the other three CPUs were not 
issuing any memory requests. Let us consider next the case where all other three 
CPUs read a continuous infinite length vector stream from consecutive addresses. 
If the fourth CPU does the same, obviously all four CPUs will see the same 
effective memory bandwidth measured to be 158 Mword/s for each procesor. This 
is the most favourable memory access pattern. The aggregate rate of 
4 x 158 = 632 Mword/s or 2.6 words/clock period therefore is the aggregate 
maximum memory bandwidth obtainable on the Cray-2. It should be noted that 
this is less than one word per procesor and cycle. This observation by itself should 
make clear that the four CPUs in any non-trivial situation will compete strongly for 
memory bandwidth. The decrease from 210 Mword/s (three CPUs idle) to 
158 Mword/s results from bank busies generated from the other three CPUs if 
active. 

In addition to the other three CPUs generating bank busy conflicts we can have 
the conflict of vector-end and vector-beginning bank addresses to overlap, i.e., the 
first-word-address offset of 63 discussed above. If this occurs for the CPU under 
study, its bandwidth decreases to 108 Mword/s. 

Still more severe conflicts are generated if the other three CPUs exhibit a less- 
well behaved memory access pattern. The worst case possible occurs if all these 
three CPUs access only one and the same memory bank continuously. In this case 
the effective bandwidth seen by the fourth (well-behaving, unit stride, no internal 
conflict) CPU drops down to 41 Mword/s. Any intermediate value can be obtained 
by having the other three CPUs perform intermediate variations of access patterns. 
It has been shown, therefore, that one and the same code executing within one 
CPU can exhibit performance variations between 41 and 210 Mword/s, or a factor 
of live, solely depending upon the memory access patterns of the other three 
processors. For a memory-access bound computation, where all the arithmetic is 
hidden perfectly behind (overlapped with) the memory accesses, that factor 
immediately translates into corresponding MFLOPS or MFLIPS variations. This is 
the case for the algorithm studied here (Appendix A). If this algorithm were not 
involving any memory references, the maximum execution rate would be limited by 
the eight logical operations per word update executing at 220 MFLOPS, resulting 
in 1760 MFLIPS. This is only 14% larger than the rate measured on an otherwise 
empty machine, 1512 MFLIPS. Therefore, memory access and functional unit 
operations are almost perfectly overlapped for the code of Appendix A. Better 
overlap is inhibited by a insufftcient number of vector registers and would not come 
to bear anyway in memory-contention limited situations, which prevail in any 
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realistic operating environment (either because of multi-user mode or because of 
multitasking). 

As can be seen from Fig. 1, the worst case of 41 Mword/s, corresponding to 
437 MFLIPS, does not occur under any normal circumstances. It would require 
quite a curious conspiration of user programs to access all of only one and the same 
memory bank all of the time. The performance variations of a few percent shown in 
Fig. 1 are much more typical. 

Unfortunately the previous paragraph does not hold true for a multitasked 
program. In this latter case it will occur that all tasks work on the same data 
arrays. If someone chose to apply row-wise algorithms to matrices of dimension 128 
or a multiple thereof exactly this type of conspiracy would occur, and extreme slow- 
downs could be observed. Multitasking in this case would lead to speedup factors 
much smaller than four. In general it can be said that for the Cray-2 multitasking is 
the more attractive the less memory-active the multitasked code is: in this case, 
multitasking gets rid of those other users causing memory contention, and, 
potentially, speedup factors much larger than four could be observed. Related 
observations have been made by Taylor and Bauschlicher [lo]. 

IV. MULTITASKING 

There exist several possible ways to multitask a computation of the present type. 
If one is doing small systems, one always has to do calculations for a number of 
identical systems, the only difference being the initial random number seed. This is 
required in order to reduce the statistical variance which is large for small system 
(N < 8320). The best possible (most efficient) solution then is to dynamically par- 
tition out independent systems to the CPUs available. Since systems are small no 
limitation due to limited storage arises. For small systems, the first FORTRAN 
loop given in Section II will be used, since the second, improved version is not yet 
efficient. The granularity of this scheme is very high: an individual task will take at 
least many minutes, if not more. Therefore, there is no measurable multi-tasking 
overhead. One expects speedup factors of exactly four. 

Because of the discussion of memory contention in Section III one has to be very 
careful in defining the reference single-task performance required to calculate 
speedup factors. Single-task execution time is defined onf~~ with additional prescrip- 
tions about the work of all remaining processors, i.e., depends upon the operating 
conditions. In our opinion, there are three possible ways to define single-task 
performance, of which only one is acceptable. 

1. Measure single-task execution time in a standard multi-user operating 
environment. This definition has the drawback that it will depend upon the 
installation where the measurement is made, time of day, and chance factors. It will 
generally not be reproducible and therefore cannot be accepted. 
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2. Measure single-task execution time by having all other processors idle. 
This definition will result in reproducible numbers. However, it represents a very 
significant waste of resources: no realistic large-scale calculation will ever be made 
under such circumstances. These operating conditions are totally artificial and 
contrived, and do not represent a reasonable use of investments made. 

3. Measure single-task performance by having four independent copies of the 
same program run in the four processors. This definition will lead to reproducible 
results and represents a reasonable use of resources. Of course, it serves to nor- 
malize out the bulk of memory contention effects. However, as we will show below, 
there still is a residue of these effects left. This definition will serve to measure the 
overheads involved in task communication and synchronization. It does not serve 
to measure memory contention. 

In Fig. 2 we give the MFLIPS performance of four independent calculations 
running in parallel, for 200 sweeps through the lattice (N= 24704). This graph 
corresponds to line five in Table I. We find 1086 f 5 MFLIPS, a standard deviation 
of 0.5%. This variation is due to clock interrupts, assorted UNIX demons waking 
up, memory refresh, etc. Observe the typical anticorrelation between individual task 
performances: whenever one task gets a smaller share of memory bandwidth, the 
other tasks get a larger share of it, and vice versa. This type of variation occurs 
because memory access patterns may lock between tasks for intermediate times. 
Lines four and five of Table I define the three reference values discussed in l-3 
above. By definition, the multitasking philosophy given at the beginning of this 
section results in a speedup factor of four, therefore. If one takes the single-user, 
single-task value as reference, the speedup drops down to 2.9 because of memory 
contention. If the “Minnesota multi-user operating condition” is taken as reference, 
a speedup factor of 3.5 results. This last result stems solely from the fact that the 
current program is more memory-intensive than most others at Minnesota. It is not 
clear how much this finding has more global implications. 

For large problems the multitasking philosophy described thus far is not feasible: 
there is not enough memory on the Cray-2. In any case, for any finite memory 
available, one would like to study the largest problem possible, where all of this 
memory is used for one problem. We therefore have to multitask a single problem 
solution. 

FIG 2. Performance of four ldentlcal copies of single-task code running simultaneously and indepen- 
dently in smgle-user (dedicated) mode, in MFLIPS, momtored at 200 diffeent times (N = 24,704 system). 
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Let us consider first a two-way multitasking. The original problem specification 
implies some amount of recursiveness: first work on one-half of the system, the 
“red” spins, or sublattice X. Only ufkr all the X spins have been treated, is it 
allowed to deal with the “black” or sublattice Y spins. Therefore, some syn- 
chronization is required. The sublattices X and Y already had been broken down 
into two sublattices each. The two sublattices of X are totally independent of each 
other and may be given to two independent tasks. After both are completed, the 
two independent sublattices of Y may be treated. Two-way multitasking therefore 
comes quite naturally. 

Of the various multitasking primitives the task-start and wait for task- 
termination routines [ 111 are the most time-consuming ones, i.e., incur the most 
overhead. It is therefore advisable to create tasks only once per program run, and 
use events in order to synchronize the X/Y sublattice calculations. We therefore 
have four tasks, corresponding to the 2 x 2 sub-sub-lattices. Each task is associated 
with two events: a start event, posted by the main program and waited for by each 
task, and a done event, posted by the task and waited for by the main program. 
The initial two sweeps through the lattice then will be executed as Fig. 3 shows. At 
t = 1, the main program posts the start events for the two X-sublattice tasks which 
have been created previously. At t = 2, these two tasks post their done events, and 
return to waiting for their next start events. The main program, upon receiving the 
two done events, posts the start events for the Y-sublattice tasks, and then waits for 
their done events. These tasks proceed to update the Y-sublattice and then post 
their done events. The main program receives these two done events, and the next 
sweep through the lattice can issue. 

The resulting performance figures are given in the sixth line of Table I. In single- 
user mode, i.e., having two CPUs idle, 2770 MFLIPS are obtained, a speedup of 1.8 
compared to the single-task, single-user reference. The loss of 20% of a CPU is 
attributed to memory contention; the synchronization calls take only a few hundred 
clock periods each, or about one microsecond, compared to task execution times of 
100 ms or more (N= 24, 704). Load is well balanced since the same number of 

1 2 3 4 

FIG. 3. Activities of tasks vs time. Broken lines, task waits for “start work” event to be signalled 
from master. Full lines, task executmg. Two-way multitasked version. The four-way multitasked version 
is Identical, with the exception of four tasks active for each the X and Y sublattice calculations. At the 
time points I, 2, . . . . the master task watts for events signalling the completion of calculations for one 
sublattice, and then posts events to signal the tasks for the other sublattice to begin their work. 
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spins are contained within each sublattice, and the same number of operations and 
memory accesses are performed. The number obtained under “multi-user” con- 
ditions has been obtained at a time shortly after system-startup where there were 
only two other tasks in the system. Under standard operating conditions this num- 
ber may become arbitrarily small: in a multitasked program, measuring CPU time 
is meaningless as far as multitasking performance evaluation is concerned. Instead, 
one must measure real time. Real time for executing a program in multi-user mode, 
however, depends upon a number of strongly varying factors, like the number of 
users and the number of jobs in the system, characteristics of jobs, etc. This number 
of 2500 MFLIPS therefore is highly uncertain and not reproducible. If there is an 
increasingly large number of tasks in the system competing for CPUs, real time 
performance of a single task may approach zero. 

In order to obtain four-way multitasking we have to split the four sub-sub- 
lattices used so far once again. In the current case, it was found easiest to simply 
split the outer loop, i.e., to have one processor work on approximately the first half 
of a sub-sub-lattice, and another processor on the second half. Because of the first 
line being slower as a consequence of periodic boundary conditions, the second 
“half’ is made a litle bigger than the first “half,” since the very first line requires 
somewhat more time per spin than all other lines. However, for the large systems 
considered here, the potential work imbalance would be less than 0.4% if this point 
were not considered. The scheme of Fig. 3 then is generalized for a total of eight 
tasks, four per sublattice X or Y. There are eight start events and eight done events, 
consequently. The synchronization logic does not change. 

The spin-flip rate observed with this method is given in the last line of Table I, 
4300 MFLIPS. This number is obtained by dividing the system size by elapsed 
wall-clock time, for one complete sweep over the lattice, averaged over 100 sweeps 
(there is about 0.5 % statistical variation in task execution times due to reasons dis- 
cussed above). Compared to our reference calculation of four independent identical 
tasks the speedup factor is 3.96, compared to single-task single-user mode 2.84, and 
compared to single-task CPU time in standard multi-user operating mode 3.42. It 
should be obvious by now that the last two factors are explained by memory 
contention: if three processors are idle, the one active processor sees a much higher 
effective memory bandwidth, i.e., the single task is faster, resulting in the 2.84 
speedup factor. Under standard multi-user conditions, the average program at 
Minnesota still takes less than the maximum memory bandwidth it could get, so 
that the present simulation task gets more than a fair share of aggregate memory 
bandwidth. Comparing with the case of four independent tasks, we still have to 
account for 4% CPU, or 1 % efficiency missing in the first speedup factor given. 

The measurements reported above were taken on the N= 24704 system. 
Individual task execution time is 69 ms. The few hundred clock periods or about 
1 ps required for treating the events, or fractions of a millisecond to perform a con- 
text switch, cannot explain this discrepancy. We performed a more detailed timing 
analysis by time-stamping each individual task start and stop event. In spite of 
exactly the same operation count involved in each task and all memory accesses 
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being stride one, we nevertheless observe a slight load imbalance of about 1% 
explaining the above discrepancy. This imbalance results from the different lirst- 
word-address offsets required in fetching neighbours for the various sublattices. It 
has been seen in Section III that consecutive vector reads from common memory 
with unit stride will result in varying effective memory bandwidth depending upon 
possible overlap in memory bank space of the vectors fetched. Investigating the 
offsets (like IA(J+ M) and [C(J) in the FORTRAN code given in Section II) it 
turns out that unavoidable conflicts of this sort result with varying frequencies for 
the individual sublattices leading to the discussed work imbalance. We have 
therefore explained all performance figures given in Table I by common memory 
access limitations. The classical overheads usually discussed in multi-tasking 
investigations play no role in the present case. This is of course because of the 
rather large granularity of the present problem. If we were to look at smaller 
problems, in particular the context switch time would become observable and 
reduce the speedup factor. But again, for smaller problems a totally different way of 
multitasking would be employed as outlined at the beginning of this section. 

In order to avoid reduced speedup factors due to this kind of load imbalance, 
dynamic load balancing [ 111 is strongly recommended wherever applicable. For 
the current case, dynamic load balancing is rather difficult to implement and would 
drastically reduce the granularity leading to much larger overheads; for the case of 
smaller systems discussed at the beginning of this section dynamic load balancing is 
the method of choice. 

The calculation reported in the next section evaluated the magnetization of the 
spin array at ever)’ sweep through the lattice. In this rather unusual case some 
additional attention must be given to this usually negligible part of the com- 
putation. The magnetization calculation, which obviously can be carried out 
independently for any desired subset of words, has been multitasked by giving each 
processor one of the four sub-sub-lattices to evaluate. Furthermore, the relevant 
loop also has been coded in Cray assembly language to achieve better overlap 
between memory access and integer functional unit operation, resulting in a final 
performance of 0.05 ns per spin, utilizing the full machine. 

V. RESULTS 

We performed a run of 2400 lattice sweeps for the 123008’ system. The system 
was initialized as a percolation system with “up” probability p = & corresponding to 
an energy of E = - 1.125 or temperature [ 121 T = 1.092349 T,, where T, is the 
critical temperature, and a magnetization of M= 0.75. The magnetization was 
measured at each iteration in order to obtain a detailed history, and is given in 
Fig. 4. This lattice of 15, 130, 968, 192 spins needs 236, 425, 220 words of storage, 
including two extra lines added for convenience in treating the periodic boundary 
conditions. The total wall-clock time used was 2 h 50 min of dedicated four- 
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SWEEP 

FIG. 4. Natural logarithm of magnetization measured vs number of sweeps through the lattice. The 
upper curves give measured data and the four-term exponential lit, for the N’= 123,008’ system The 
lower curve gives results for the standard Metropolis algorithm [Z] applied to a 2048 x 2049 system, see 
discusslon in text. 

processor Cray-2 machine time. These 10, 200 s divide into 70 s for initialization 
(non-multitasked for ease of random-number generation), 8445 s for lattice updates, 
and 1685 s for magnetization measurements. The calculation could not have been 
performed on any other computer available today because of the required data 
transfer rate of 400 Mword/s. Using a Cray-XMP solid-state disk (SSD) would 
have slowed down the calculation at least a factor of four; using magnetic disc 
would have resulted in a minimal slowdown factor of 50 (assuming striping of data 
to 8 disks in parallel). 

Because of the size of the system this data is accurate enough to support being 
fitted by a sum of four exponential terms. Statistical errors have been estimated by 
dividing the lattice into four sublattices, and recording the magnetizations 
individually. The first 25 sweeps have been disregarded in the fitting procedure; 
probably another one or two exponential terms would be required to describe these 
very early times. The best four-term tit found under these conditions is 

M(r) = 0.088301 exp( -0.001818t) + 0.231996 exp( -0.003986 I) 

+ 0.187507 exp( -0.010411 t) + 0.107897 exp( -0.040401 t), 
(1) 

where the time t is measured in lattice sweeps (= Monte Carlo steps per spin). All 
parameters are determined to within 10%. No satisfactory tit can be achieved with 
only two or three terms, as is quite obvious from the significant deviations from the 
straight line in Fig. 4. The above expression is also shown in Fig. 4. The parameters 
do not exhibit any size dependence for the large systems studied here. A simulation 
of the N= 57,472 and N= 24, 704 systems results in essentially the same 
parameters, though with less statistical certainty. Since the very early time regime 
due to the percolation initialization may be amenable to analytic treatment, the first 
ten magnetizations are given in Table II. 
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TABLE II 

Early time magnetuatlons at E = - 1.125, 
for the N = 123,008 system 

Sweep Magnetlzatkon 

0 0.75 
1 0.641764 
2 0.630649 
3 0.616336 
4 0.605299 
5 0.591935 
6 0.588981 
7 0.572937 
8 0 569760 
9 0.560427 

10 0.555507 

NCW Sweep 0 is the percolation mitlahzatlon. 

While the MFLIPS rate of the present calculation is significantly larger than any 
other achieved in the past and, in particular, a factor of 50 faster than the most 
proficient implementation of the standard canonical Metropolis algorithm [2], the 
question arises if the Q2R algorithm may not need many more iterations in order 
to obtain physically equivalent results. At the temperature T= 1.092 T, relevant for 
the present study the magnetization must decay to zero exponentially with time, as 
is borne out by the analytical formula given above. If this exponent is much larger 
for the Metropolis algorithm, the latter will have a chance to compete. 

In order to investigate this idea we performed a canonical Metropolis simulation 
[2] of a 2D 2048 x 2049 system, initialized the same way as discussed above, at the 
temperature of 1.092349 T,. The results of this simulation are given in the lower 
curve in Fig. 4. Because of the much smaller system size there is significantly more 
statistical fluctuation. However, the first 100 sweeps follow rather accurately an 
exponential law given by 

M(t) = 0.6302 exp( -0.0322 t). (2) 

This result does not depend significantly upon system size; a 1025 x 1024 system, as 
well as a 8321 x 8320 system, gives the same exponent to better than 1% accuracy. 
It is seen that this exponent is a factor of 18 larger than the asymptotic Q2R 
exponent of 0.001818. That is, the Metropolis algorithm at this temperature moves 
a factor of 18 faster in physical time than the Q2R algorithm asymptotically, but 
only a factor of 10 faster at early times. Since the simulation speed per sweep (for 
the same system size, of course) is a factor of 50 slower, the Q2R algorithm still 
wins, though not by as impressive a margin, but only a factor of 2.5. 

In order to find the behaviour of this penomenon with temperature, we did a 
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number of smaller runs at T/T, = 1.928443, corresponding to E = -0.5, with initial 
magnetization M = 0.5 achieved via percolation initialization with p = 0.25. With 
218 sweeps for the N= 90,240 system we find leading exponents of 0.07 for the 
Q2R algorithm, and 0.5 for the Metropolis algorithm ( f 10%). For the latter 
simulation, 28 sweeps in the 12048 x 12049 system were used. At this rather high 
temperature the Metropolis methods gets 7 times as far per sweep as does the Q2R 
algorithm, therefore. At T= cc the Metropolis algorithm will be inferior, since 
every spin is flipped every time, i.e., the system never really changes but is strict/~ 
periodic with period length = two sweeps. This does not happen for the Q2R 
algorithm. Consequently, somewhere in the high temperature regime there must be 
a crossover point where both algorithms have the same efhciency. However, since 
this regime is not really interesting, we did not try to find that temperature. It seems 
to be a fair conclusion, however, from the present evidence as well as that of 
Ref. [6], that the Q2R algorithm is more strongly affected by critical slowing down 
than the standard Metropolis algorithm. 

We also performed a number of calculations in closer vicinity of the critical tem- 
perature. At temperatures above the critical temperature any initial magnetization 
must decay to zero exponentially (Fig. 4). At T= 1.003 T, this exponential decay 
can still be observed, though not with sufficient accuracy to measure the exponent 
(without significant investments in computer time), see Fig. 5. For a temperature of 
T= 1.01 T, the exponential decay is already rather well pronounced (bottom curve 
in Fig. 5). 

At the critical temperature any initial magnetization must decay to zero like a 
power law. For the Q2R algorithm this is demonstrated in the center part of Fig. 5, 

-1' a 
I I I I I 

6 7 8 9 10 11 12 13 14 

FIG. 5. Natural logarithm of magnetization measured vs natural loganthm of number of sweeps. The 
upper curve results for T=0.97898 T,, where M = 0.75071 is the exact result. The center curve 1s at 
T= T,. The straight line tit is given in Eq. (3). The two bottom curves show the typical behaviour at 
temperatures above T,. All results are from the N= 8320 system. 
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exhibiting 311,000 sweeps for the N2 = 83202 system. The asymptotic behaviour is 
given by 

lnM(r)= -0.02166-O.O5787Int, 

where the time t is measured in lattice sweeps, and the coefficients are determined 
within 5%. For the standard Metropolis algorithm [2] the corresponding result is 

In M(t) = -0.1589 - 0.05614 In t. (4) 

It is seen that at the critical temperature both algorithms exhibit the same exponent, 
i.e., are equally efficient per sweep. The performance advantage of the Q2R 
algorithm at this-the most important-temperature therefore carries over in full to 
the simulation of physical observables. The exponents given in Eqs. (3) and (4) do 
not depend upon system size in our calculations, for both the Metropolis and the 
Q2R algorithm, as far as the error bars allow us to tell. 

A corresponding investigation for the microcanonical algorithm with demons [S] 
would be most useful. The study of Bhanot et al. [13] does not address the 
exponent discussed above. Their estimate as to the higher efficiency is based on 
CPU time comparisons. Since they do not give details of their Metropolis 
implementation, no comparison on efficiency per lattice sweep can be made. 

At temperatures below the critical temperature the initial magnetization is to 
approach exponentially the spontaneous magnetization of the 2D Ising model, 
which is known exactly for all temperatues [12]. It has been shown in Ref. [6] that 
the Q2R algorithm roughly, i.e., within statistical uncertainties of several percent, 
reproduces these values. We performed a more quantitative test at E = -2”2 -0.1, 
or a temperature of 0.97898 T,. The results for 7 x lo5 sweeps over the N* = 8320* 
lattice are shown in the upper part of Fig. 5, together with the exact result of 
M= 0.75071. We use these rather large lattices in order to avoid any discussion of 
finite-size effects, which can be significant for the microcanonical Q2R 
algorithm [ 131 on smaller lattices. The measured value is M= 0.7508 f0.0004 in 
perfect agreement with the exact value. 

We must remark that none of the calculations reported here used any averaging 
over initial configurations. In each case, we prepared one single contiguration by 
randomly setting a number of spins in order to achieve a system at the desired 
energy. All results reported come from single, long runs stepping the single 
configuration in time. While of course this cannot prove the ergodicity of the 
present algorithm we can state that no traces of non-ergodic behaviour have been 
found. For very low temperatures, however, non-ergodic behaviour is known to 
occur [ 143. Also on short time scales traces of periodic behaviour may be seen, c.f. 
the regular oscillations superimposed on the curves in Fig. 5. This periodic 
behaviour is due to finite clusters with finite periods under the deterministic Q2R 
algorithm. 
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VI. SUMMARY AND CONCLUSIONS 

We have demonstrated that Monte Carlo simulations of the present type can be 
adapted to the architecture of the Cray-2 rather well. The multitasking performance 
is limited by memory bandwidth considerations. Classical considerations like 
inter-task communication and synchronization, as well as work balance, are 
comparatively of little importance, due to the large granularity of the problem. The 
most important consideration for making optimal use of a Cray-2 therefore is 
reduction of memory contention. In some cases, like matrix multiply, the local 
memory may be used for this purpose; for the present algorithm we did not find 
any use of local memory. 

The simulation speed per spin of the Q2R algorithm is significantly larger than 
the speed of the Metropolis algorithm. However, this fact is at some temperatures 
partially offset by a larger number of lattice sweeps required by the Q2R algorithm 
in order to “travel the same distance in a random walk.” Overall, and in particular 
at the critical temperature, the Q2R algorithm is significantly faster than 
Metropolis. 

APPENDIX A. ASSEMBLY LANGUAGE VERSION OF INNER Loop 

This appendix gives an optimized version of the FORTRAN double loop of 
Section IT, using cal (Cray assembly language). The optimization is for the Cray-2; 
a Cray-XMP would require an entirely different code to be optimal. A number of 
standard macros are used for the subroutine linkage: 

IDENT LOOP 
* Q2R ALGORITHM INNER LOOP, GENERAL CASE 

ENTRY LOOP 
LOOP ENTER (II, 12,13,14,15, NLOOP, MDMX64), MODE = BASELVL 

BASE M 
* 
* REGISTER MAP 
* A HOLDS S HOLDS 
*------------------ ~~~~~ 
*o 64 
* 1 >IAl< 
*2 >IA2< 
*3 >IA3< 
*4 >IA4< INNER LIMIT 
* 5 >ID < OUTER COUNTER 
*6 I 1 
*7 > ID < OLD INNER COUNTER 
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ADDRESS Al, 11 ; IA1 
ADDRESS A2, I2 ; IA2 
ADDRESS A3, I3 ; IA3 
ADDRESS A4,14 ; IA4 FIRST WORD ADDRESSES 
ADDRESS A5, I5 ; ID(K) 
LOAD S4, MDMX64; INNER LOOP TRIP LIMIT 
s7 s4 
LOAD S5, NLOOP ; OUTER LOOP TRIP COUNT 
A6 1 
S6 A6 

A0 D’64 
VL A0 ; VECTORLENGTH 

Vl (Al, A6) 
Al Al +A0 
V3 (A3, A6) 
A3A3+AO 
V2 (A2, A6) 
A2 A2+AO 
J BEGIN 

; GET IA1 

; GET IA3 *** pre-fetch *** 

; GET IA2 

LLL 
BEGIN 
*** 

jA7, A6) V4 
vo Vl\V3 

A7 A5 
A5ASfAO 
S7 S7-S6 

; STORE ID *** from previous loop trip *** 
; IA1 XOR IA3 

; SAVE CURRENT ID ADDRESS 
; GET NEW ID ADDRESS 
; DECREMENT INNER LOOP COUNT 

*** 
V4 (A4, A6) 
A4A4+AO 
V6 Vl \,V2 

*** 
JN S7. PROCEED 
s7 s4 
Al Al +A6 
A2A2+A6 
A3A3+A6 
A4 A4+A6 
A5A5+A6 

*** 
PROCEED V.5 (A7, A6) 

Vl V2;,V4 
v7 VI&V0 

; GET IA4 

; IA1 XOR IA2 

; NO WORD SKIP 
; RE-INIT COUNTER 

; SKIP ONE WORD 

; GET ID 
; IA2 XOR IA4 
; FIRST AND 
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V2 (A2, A6) 
A2 A2+AQ 
Vl v3\v4 
VO Vl&V6 
V3 (A3, A6) 
A3 A3+AO 
V6 VO!V7 
Vl (Al, A6) 
V4 V5\V6 
Al Al+AO 

S5 S5-S6 
JN S5, LLL 

(A7, A6) V4 
RETURN 
ENDSUB 
END 

; GET IA2 *** for next trip *** 

; IA3 XOR IA4 
; SECOND AND 
; GET IA3 *** for next trip *** 

; OR 
; GET IA1 *** for next trip *** 
; XOR FLIP 

; DECREMENT LOOPCOUNT 

; STORE RESULT FROM LAST TRIP 

APPENDIXB. MEMORY-BANDWIDTH MEASURING INSTRUMENTATION 

In order to avoid any register conflicts a memory bandwidth timing routine 
should be written in assembly language for the Cray-2. The routine given here will 
read 256,000 words from common memory, using the given stride and address 
offset between consecutive vectors. This routine should be called sandwiched 
between calls to the CPU timer [second( )] from a FORTRAN main program. 
Overhead is then negligible. 

IDENT TIMER 
ENTRY TIMER 

TIMER ENTER (11, STRIDE, OFFSET), MODE = BASELVL 
BASE M 

* 
ADDRESS Al, I1 ; address of array to be read from 
LOAD A6, STRIDE ; stride between vector elements 
LOAD A7, OFFSET ; address offset between first words 
Sl 1 7 of vectors 
S6 D’lOOO ; read 4 * 1000 vectors . . . 

A0 D’64 
VL A0 . 1 ... of length 64 



MULTITASKED CELLULAR AUTOMATON 447 

L( IOP VO (Al, A6) 
Al Al +A7 
VI (Al, A6) 
Al Al +A7 
V2 (Al, A6) 
Al Al+A7 
V3 (Al, A6) 
Al Al +A7 
S6 S6-S 1 
JN S6, LOOP 

; LOAD TO VO WITH STRIDE 

; LOAD TO Vl WITH STRIDE 

; LOAD TO V2 WITH STRIDE 

; LOAD TO V3 WITH STRIDE 

; all loads done to different 
; vector registers 

RETURN 
ENDSUB 
END 
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